Now we note that

$$a+b+c=2s$$

 $ab+bc+ca=s^2+4Rr+r^2$
 $abc=4sRr$
 $a^2+b^2+c^2=2(s^2-4Rr-r^2).$

Therefore the inequality becomes

$$\begin{split} \frac{12sRr + 4s(s^2 - 4Rr - r^2)}{2s(s^2 + 4Rr + r^2) - 4sRr} + \frac{1}{2} &\leq \frac{R}{r}, \\ \frac{6Rr + 2(s^2 - 4Rr - r^2)}{(s^2 + 4Rr + r^2) - 2Rr} + \frac{1}{2} &\leq \frac{R}{r}, \\ \frac{2s^2 - 2Rr - 2r^2}{s^2 + 2Rr + r^2} + \frac{1}{2} &\leq \frac{R}{r}, \\ 2s^2(R - 2r) + r(4R^2 + 4Rr + 3r^2 - s^2) &\geq 0. \end{split}$$

which is true because by Euler's inequality $R \ge 2r$, and by Gerretsen's inequality $s^2 \le 4R^2 + 4Rr + 3r^2$. So the proof is completed.

4597. Proposed by George Apostolopoulos.

Let a, b, c be positive real numbers with a + b + c = 1. Prove that

$$a^{2} + b^{2} + c^{2} + \frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{a}} \ge 2(ab + bc + ca).$$

We received 29 submissions, of which 27 were correct and complete. We present two solutions.

Solution 1, by Arkady Alt.

Let
$$p = ab + bc + ca$$
 and $q = abc$, so $a^2 + b^2 + c^2 = 1 - 2p$ and $\frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} = \frac{3q}{p}$.

The problem becomes to prove $1 - 4p + \frac{3q}{p} \ge 0$.

Since $3(ab+bc+ca) \le (a+b+c)^2$ then 0 , and there are two cases.

If
$$p \in (0, 1/4]$$
 since $p, q > 0$ then $1 - 4p + \frac{3q}{p} > 0$.

By Schur's Inequality, $9q \ge 4p - 1$, and so,

$$1 - 4p + \frac{3q}{p} \ge 1 - 4p + \frac{3}{p} \cdot \frac{4p - 1}{9} = \frac{(4p - 1)(1 - 3p)}{3p} \ge 0$$

in the case that $p \in (1/4, 1/3]$.